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Abstract— High-resolution ultrasound imaging is critical
in clinical diagnosis, enabling early detection of abnor-
malities and precise assessment of anatomical structures.
While super-resolution techniques have been widely ex-
plored in medical imaging, most existing approaches are
restricted to fixed or integer scaling factors. Arbitrary-
scale super-resolution, especially for ultrasound images,
remains largely unaddressed. This study presents a novel
pipeline integrating a lightweight model, EliteNet, with ar-
chitectural and training modifications to support arbitrary
and asymmetric scaling for ultrasound images. A resize
layer is introduced at the head of the network to accept
user-defined scaling factors, and a two-step training strat-
egy is employed to enhance output quality. In the first
step, the model is trained using a hybrid loss combining
Structural Similarity Index (SSIM) and Frequency Domain
Loss (FDL). In the second step, only the final layer is
updated using SSIM and L1 loss, preserving learned fea-
tures while eliminating artifacts. A dedicated dataset was
collected and augmented using flips and reflective padding
to ensure structural consistency. Low-resolution images
were synthesized using both symmetric and asymmetric
scale factors. Our approach yields visually superior results
and demonstrates better generalization across arbitrary
scales. Quantitatively, it achieves a PSNR of 22.8018 and
SSIM of 0.5947, outperforming existing baselines such as
ArbRCAN, SRDNet, RDUNet, and ABPN. Extensive abla-
tion studies validate the effectiveness of the loss config-
uration and training strategy. This work lays foundational
groundwork for adaptive, high-quality ultrasound imaging
and opens opportunities for real-time, resource-efficient
diagnostic applications.

Index Terms— Enter about five key words or phrases in
alphabetical order, separated by commas.

I. INTRODUCTION

In medical imaging, the demand for high-resolution im-
ages is paramount. Enhanced resolution improves diagnos-
tic accuracy, aids in surgical planning, and facilitates re-
search in disease understanding. Ultrasound (US), computed
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tomography (CT), and magnetic resonance imaging (MRI)
rely heavily on image quality to extract meaningful clinical
insights. Among these, US imaging is widely favoured for its
real-time capabilities, cost-effectiveness, and non-invasiveness.
However, US inherently suffers from resolution limitations
due to hardware constraints, noise, and attenuation, which can
obscure critical details and impact diagnostic reliability. Super-
resolution (SR) techniques have emerged as a powerful tool to
address these resolution limitations. Traditional SR methods
[1] aim to upscale low-resolution images by fixed scaling
factors such as 2x, 3x, or 4x, enhancing visual and diagnostic
quality. While effective, these methods often fail to address
real-world medical applications’ unique and diverse resolution
needs. For instance, US imaging in tumor characterization,
vascular studies, or fetal assessments may require tailored
resolution adjustments to visualize structures of interest op-
timally. Fixed scaling factors are insufficient to meet such
varied demands. Arbitrary Scale Super-Resolution (ASR) [2]
offers a transformative approach, enabling image enhancement
at any desired scale, including fractional scales such as 1.2x,
1.4x, and 2.3x. This flexibility is particularly valuable in US
imaging, where clinicians often require customized resolution
enhancements for specific diagnostic tasks. For example, a
fractional scaling factor might be essential to highlight delicate
structures in vascular imaging or detect subtle abnormalities in
soft tissues, which might not be feasible with predefined fixed
scales. The ability to achieve arbitrary SR ensures that imaging
systems adapt dynamically to the clinical context, improving
diagnostic precision and patient outcomes. The development
of ASR techniques has been closely tied to advancements
in deep learning, particularly Convolutional Neural Networks
(CNNs) [3]. CNNs have proven exceptionally effective in
modelling spatial hierarchies and extracting complex features
from medical images. These capabilities make them well-
suited for arbitrary SR tasks, where the goal is to upscale
images across a continuous range of scaling factors while
preserving anatomical fidelity and minimizing artifacts such
as blurring or aliasing. This is especially critical in US imag-
ing, as minor distortions can significantly affect diagnostic
accuracy. Despite these advancements, arbitrary scale super-
resolution in US imaging presents unique challenges. US
images are characterized by high variability in resolution and
texture due to differences in probe settings, imaging depth, and
tissue properties [4]. Designing models that efficiently learn
multi-scale representations and interpolate or extrapolate them
at arbitrary scales without introducing artifacts is a complex
task. Moreover, the computational demands of ASR must be
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carefully managed to ensure the technique is viable for real-
time applications, which are essential for many ultrasound-
based procedures. To address these challenges, this work
focuses on modifying the EliteNet network, a state-of-the-art
EliteNet model, to enhance its performance for US imaging.
The modifications aim to improve the network’s ability to
accurately handle fractional scaling factors, reducing artifacts
and preserving fine anatomical details. By leveraging CNN-
based architectures, the proposed approach balances com-
putational efficiency with the need for high-quality super-
resolution, making it suitable for the unique demands of US
imaging. This paper explores the methodologies underpinning
ASR, focusing on CNN-based approaches tailored to US imag-
ing. The discussion encompasses theoretical frameworks and
practical implementations, with a detailed evaluation of their
effectiveness in handling fractional scaling factors. The study
also highlights the broader potential of ASR in medical imag-
ing, underscoring its transformative impact on clinical practice.
Finally, ASR’s challenges and future directions are discussed,
focusing on enhancing adaptability and performance in diverse
medical imaging applications.

II. LITERATURE SURVEY

A. Single image super resolution
Recent advancements in single-image super-resolution

(SISR) have significantly leveraged convolutional neural net-
works (CNNs) to enhance image resolution. The pioneering
SRCNN model marked a breakthrough by enabling end-
to-end learning of resolution mapping, outperforming tradi-
tional methods such as sparse-coding-based super-resolution
techniques [5]. Deeper CNN architectures, including VGG-
inspired models, followed this, which further incorporated
residual learning to improve accuracy [6]. The Enhanced Deep
Super-Resolution Network (EDSR) was another milestone,
optimizing residual networks and eliminating unnecessary
modules to achieve high-quality performance, particularly on
benchmark datasets and in competitions like NTIRE 2017
[7]. Other notable methods like LapSRN [8] and DBPN [9]
utilized progressive and iterative learning techniques, further
improving the resolution. Additionally, innovations such as
sub-pixel convolution networks [10] and RCAN [11] have
optimized computational efficiency in the field, enabling better
performance with fewer resources. These advancements in
SISR, which focus on improving the resolution of images,
are parallel to innovations across various medical imaging
modalities. For instance, achieving higher slice resolution
while maintaining a high signal-to-noise ratio (SNR) has long
been challenging in fMRI. A modified EPI MRI protocol
using slice-shifted images has significantly enhanced slice-
direction resolution, improving SNR and better detecting small
activated areas in fMRI datasets [12]. Similarly, deep learning
models have improved resolution in other imaging modalities,
including CT, where leveraging repetitive structures in medi-
cal images has resulted in superior image quality compared
to traditional methods like SRCNN [13]. In US imaging,
resolution constraints due to physical limitations have been
addressed through CNN-based approaches, such as an unsu-
pervised super-resolution (USSR) framework that enhances

resolution without requiring external datasets [14]. Another
technique integrates vision-based interpolation with learning-
based US image and video enhancement models, improving
spatial resolution and enabling real-time predictions [15].
These approaches echo the successes of deep learning models
in SISR, underscoring the potential of CNNs to overcome res-
olution limitations in diverse medical imaging contexts. In US,
deep learning methods such as 3DCNNs [16] and Deep-ULM
[17] have significantly improved tissue signal suppression and
microbubble localization, further emphasizing the power of
deep learning in overcoming resolution challenges in real-
time medical applications. These advancements, inspired by
techniques in SISR, demonstrate that deep learning is poised
to redefine the boundaries of resolution, speed, and clinical
precision in medical imaging. SISR methods are effective for
enhancing image resolution at fixed scaling factors, but they
are limited in their ability to scale images beyond predefined
sizes. In contrast, arbitrary scale super-resolution (SR) meth-
ods offer greater flexibility, allowing images to be scaled to any
desired resolution, thereby enhancing precision and versatility
in improving resolution.

B. Arbitrary image super resolution

Super-resolution (SR) techniques have significantly ad-
vanced image enhancement in various domains, including
medical imaging. However, their application to US imaging
remains limited due to challenges such as irregular anatomical
features, speckle noise, and low spatial resolution. These char-
acteristics necessitate tailored SR methods that handle the non-
linear and complex transformations inherent in US imaging.
Our focus is on fractional arbitrary scale SR, a critical ad-
vancement for US, which has not yet been adequately explored
in the literature. In medical imaging, Arbitrary Scale Super-
Resolution (ArSSR) has been introduced in [18], employing
an implicit neural voxel function for up-sampling MRI images
from low-resolution (LR) inputs into high-resolution (HR) out-
puts . While this method allows arbitrary scaling, it is restricted
to integer scaling and does not address the finer adjustments
required for fractional scaling. Similarly, [19] presents an SR
model that extends multiscale training with deep convolutional
neural networks (CNNs) for MRI, providing flexibility for
varying scale factors. Insights from SR techniques for natural
images can inform approaches to US SR. The Meta-SR [?]
model introduces a Meta-Upscale module that dynamically
adapts filters for arbitrary scale factors, enabling flexible
transformations [20]. SRWarp incorporates adaptive warping
layers to address spatially varying transformations, enhancing
its ability to handle real-world distortions [21]. Lightweight
models like those proposed by [22] integrate scale-aware
feature adaptation, balancing computational efficiency with
performance for arbitrary-scale tasks. Similarly, Overnet and
ASDN refine feature extraction while reducing computational
demands for arbitrary-scale SR [23], [24]. While these models
offer significant advances, they often assume structured image
content, limiting their direct application to the irregularities
of US images. Techniques such as combining blind deblur-
ring with SR have proven effective in enhancing robustness
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against degradations, which could help handle US-specific
artifacts like speckle noise [25]. CiaoSR’s scale-aware non-
local attention mechanism improves feature representation for
arbitrary-scale SR tasks [26]. Additionally, implicit neural
representations, such as OPE-Upscale, use position encoding
for efficient SR, offering potential benefits for US imaging
[27]. Hybrid approaches like MambaSR, combining state-
space models with Fourier Convolution Blocks, capture spatial
and frequency-domain information, which is valuable for US
datasets [28]. Fractional scaling is crucial in US imaging,
particularly for clinical applications. For instance, a physician
may need to enhance an US scan of a tumor to guide a biopsy.
Fractional scaling can improve resolution, helping to delineate
tumor boundaries more effectively. Methods like AIDN’s
Conditional Resampling Module (CRM) show potential for
adapting fractional scaling to US SR [29], and the A-LIIF
model’s use of local implicit functions provides a pathway for
ultrasound-specific SR improvements [30]. The existing SR
techniques offer a foundation, their adaptation to US imaging
requires addressing challenges such as irregular structures,
speckle noise, and fractional scaling. Our work aims to develop
a novel fractional arbitrary scale SR method tailored for US,
addressing these limitations and enhancing its clinical utility.

III. METHODOLOGY

A. Dataset

1) Data acquisition: In a typical US process, high-frequency
sound waves are transmitted into the body, and the reflected
echoes are received, converted into electrical signals, and
processed to form images on the machine’s display. RF data
carries valuable information about the intensity and frequency
of these echoes and serves as the foundation for generat-
ing various imaging modes, including B-mode, Doppler, and
elastography. In this study, RF data was acquired using a
research-grade US system equipped with 128 channels. For
each transmitted pulse at a specific frequency f , 32 channels
operated as transmitters and 64 channels as receivers in a
sequential manner, repeated four times to capture the complete
echo profile. The probe used for image acquisition was the
L11−5V linear array transducer, and scanning was performed
on the CAE Blue Phantom breast US model, a high-quality
medical training phantom designed to replicate the acoustic
and physical properties of real human breast tissue. To gener-
ate B-mode US images from the RF data, envelope detection
and logarithmic transformation were applied. Envelope detec-
tion extracts the amplitude of the raw RF signal received by
the transducer, while the log transformation compresses its
dynamic range. This enhances the visibility of subtle or low-
contrast structures, improving the interpretability of the final
B-mode image. The overall data acquisition and processing
pipeline is illustrated in Figure 1.

2) Data preprocessing: To prepare the acquired US data for
practical model training, a structured preprocessing pipeline
was developed to enhance data quality, increase variability,
and ensure consistency across all samples. The dataset ini-
tially comprised 400 US images captured from a CAE breast
phantom at a centre frequency of 5 MHz. The original images

Fig. 1: B-mode image acquisition pipeline

(Figure 2(a)) had a resolution of 128×156 pixels (w× h). To
align with the architectural requirements of the model, each
image was padded reflectively along the height to reach a
uniform size of 128× 192. Reflective padding was chosen to
preserve edge features and minimize boundary artifacts, which
can otherwise distort learning at image borders. Each image
was resized down using different scaling factors, resulting in
low resolution images. This process allowed the model to learn
robust mappings across various resolutions. Finally, a custom
dataset class was implemented to handle the multi-scale nature
of the data. This ensured that each training batch contained
images of different scale factors and their corresponding
scaling information, enabling the model to handle variable
input conditions effectively and making the training process
more flexible and interpretable.

(a) High resolution US image (b) Low-resolution US image

Fig. 2: The figure shows the high and low resolution of the
images that we have used in the experiment

B. Multi Objective Loss Design

In medical image super-resolution, preserving high-
frequency content is critical, as it directly impacts diagnostic
accuracy. To emphasize this, a custom training loss function
was adopted, defined as:

Ltrain(x,y) = α · LSSIM(x,y) + (1− α) · LFDL(x,y), (1)

Where α is a weighting parameter that balances the SSIM [31]
loss and the Frequency Domain Loss (FDL) [32] . The optimal
value of α was determined via grid search over the interval
[0, 1] with a step size of 0.1, monitored using Weights and
Biases to ensure consistent performance across training runs.
The SSIM [31] loss function is given by:

LSSIM(x,y) = 1− SSIM(x,y), (2)
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Where the Structural Similarity Index (SSIM) is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(µ2
y + σ2

y + C2)
, (3)

where µx is the mean over a window in the image x and σxy

denotes the covariance between the two images. LFDL(x, y)
refers to the Frequency Domain Loss, adopted from [32].
FDL defines a perceptual similarity metric that compares two
images based on their spatial structures and frequency content.
Given two input images x and y, we first extract their deep
feature representations using a shared backbone network F .
In our implementation, the network chosen was EfficientNet:

fx = F(x), fy = F(y) (4)

To analyze the structural and frequency-based differences, we
transform these features into the frequency domain via the
multidimensional Fast Fourier Transform (FFT):

f̂x = FFFT(fx), f̂y = FFFT(fy) (5)

and decompose them into magnitude and phase components:

Mx = |f̂x|, Φx = ∠f̂x, My = |f̂y|, Φy = ∠f̂y (6)

The mean absolute differences between the sorted projections
are then computed to quantify dissimilarity in both magnitude
and phase:

smag =
1

N

∑
n=1

|Mx[n]−My[n]| (7)

sphase =
1

N

N∑
n=1

|Φx[n]− Φy[n]| (8)

The final similarity score for each layer i is computed as a
weighted sum of the two components:

s = smag + λ · sphase (9)

where λ is a hyperparameter controlling the contribution of
phase information, tuned experimentally. The overall percep-
tual similarity between two inputs is obtained by averaging
over all layers:

Score(x, y) =
1

L

L∑
i=1

s(i) (10)

where L denotes the total number of feature layers used in
the comparison. This combination of SSIM [31] and FDL
[32] losses formed the first step of our training process.
Although this combination yielded satisfactory results in pre-
serving high-frequency content and structural similarity, it also
introduced unexpected white artifacts in the output images.
This is likely because the frequency domain constraints do
not directly regulate pixel intensity values.

As described extensively in the Experiments Section, to
address this challenge, we incorporated a second training step.
In the second step, we replaced FDL with L1 loss, maintaining
the same overall form of the training loss function:

Ltrain(x, y) = α · LSSIM(x, y) + (1− α) · LL1(x, y) (11)

where the L1 loss is defined as:

LL1(I, Î) =
1

H ×W × C

∑
h = 1H

W∑
w=1

C∑
c=1

|Ih,w,c−Îh,w,c|

(12)
with H , W , and C representing the image’s height, width, and
number of channels, respectively. Similarly to the first step,
the value of α was determined by hyper-parameter tuning.
For this stage, the optimal value of α was 0.5. Since the L1
loss severely penalizes pixel differences, it effectively reduces
white artifacts while preserving the high-frequency details
learned in the first step.

IV. EXPERIMENTS

A. Experimental Setting

1) Dataset Overview: Our experiments utilized a custom
US dataset comprising 400 positional images acquired from
a CAE breast tumor phantom, including representative tumor
samples, cysts, and non-tumor regions. We have applied var-
ious data transformations during the preprocessing stage to
enhance the model’s generalization capability and enable it to
learn more robust features. The entire data set was then divided
into training (80%), validation (10%), and testing (10%) sets
to ensure balanced evaluation at different stages of model
development.

2) Implementation details: We utilized the energy-efficient
EliteNet model for our experiments due to its ability to
deliver high performance while maintaining low computational
demands. The model was trained using an NVIDIA Quadro
P6000 GPU, which provided the necessary computational
power to process US data efficiently. We configured the train-
ing with a learning rate of 0.001, which decayed by a factor
of 0.8 via ReduceLROnPlateau scheduler over time to ensure
gradual convergence. The Adam optimizer was employed to
update the network weights, offering adaptive learning rates
for different parameters. A batch size of 16 was used and
the training was carried out for 500 epochs.The learning rate
decayed every 20 epochs if no improvement was seen in
the validation loss was seen. These settings were carefully
selected to optimize learning and achieve robust US dataset
generalization.

We generated low-resolution (LR) training images using
symmetric and asymmetric scale factors to develop a model
capable of arbitrary scale super-resolution. Symmetric scaling
factors ranged from 1.0 to 4.0, with a stride of 0.1, en-
suring a dense range of uniform downscaling. Additionally,
asymmetric scale factors were introduced by independently
varying the horizontal and vertical axes with strides of 0.5,
enabling the model to learn non-uniform scaling behaviors.
A resize layer was added to the model architecture which
resized all LR images to a fixed input size, regardless of
their original downscaling factor, thus facilitating arbitrary-
scale learning . A similar resizing operation was included to
test individual images before passing the image through the
model to maintain consistency in input dimensions.

Training was performed in two steps, with each steps
involving some key differences. In the initial phase, the loss
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Fig. 3: B-mode image acquisition pipeline

function involved was SSIM [31] + FDL [32] as explained in
the Methodology section. Although this combination proved
effective in preserving the high frequency components of the
image data, this step also introduced random white artifacts in
the output image data, for which the second step of training
was incorporated, with the loss function being SSIM [31] + L1.
An essential aspect of the second training step was freezing
all layers except the network’s last layer. This allowed the
model to retain the high-frequency features learned earlier
while adjusting only the final output to eliminate artifacts.
Training continued in both training stages until the loss
functions exhibited convergence, typically around 500 epochs.
Throughout the process, relevant metrics (SSIM [31], PSNR,
training loss, and validation loss) were logged to Weights and
Biases for effective monitoring.

3) Evaluation Metrics: To evaluate the performance of our
trained model in reconstructing high-quality US images, we
employed two standard image quality assessment metrics:
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [31]. PSNR is a widely used metric that
quantifies the difference between predicted and ground truth
images. It estimates how much noise or distortion is present
in the reconstructed image. Higher PSNR values typically
indicate better image quality and closer resemblance to the
original image. SSIM [31], on the other hand, measures the
perceptual similarity between two images by comparing their
structural information, luminance, and contrast. Unlike PSNR,
SSIM [31] is more aligned with human visual perception and
better indicates how similar the reconstructed image appears
to the ground truth.

V. RESULTS

We evaluated the performance of our proposed model by
comparing it against several existing super-resolution archi-
tectures. The combination of our novel loss functions and
multi-step training strategy consistently led to superior results,
as reflected in both quantitative metrics and qualitative visual
comparisons. Given the limited number of models that support
arbitrary-scale super-resolution, we focused our benchmark
primarily on the 4× super-resolution task, a standard evaluation
scale where improvements are most noticeable and widely re-
ported. The models included in our comparison are: Enhanced
Super-Resolution Training via Mimicked Alignment for Real-
World Scenes [33], ArbRCAN [34], RDUNet [35], SRDNet
[36], and ABPN [37]. Among these, ArbRCAN is one of
the few models capable of handling arbitrary scale factors,
making it a particularly relevant baseline. While the original

Fig. 4: Comparison of Our Proposed architecture’s perfor-
mance with others

ArbRCAN implementation used either L1 or VGG loss during
training, we re-trained it using a combination of both losses
to ensure a fair comparison, aligning with our objective of
preserving both perceptual quality and pixel-level accuracy.

A. Qualitative Results

To ensure a comparison across all super-resolution models,
we prepared the training data according to each architecture’s
expected input format and preprocessing requirements de-
scribed in their original implementations. This often involved
modifying or rebuilding dataset pipelines to match the resolu-
tion, normalization, and augmentation strategies used in state-
of-the-art configurations. Figure 4 presents the performance
comparison for 4× super-resolution, where the improvements
were most substantial and clearly highlight the strengths of
our approach.

The figure has the qualitative results from each model
architecture. One can clearly see the stark difference between
the high frequency data preserved by our architecture and that
of the others.

B. Quantitative Results

To evaluate the performance of our models, we primarily
used two widely accepted image quality metrics: Structural
Similarity Index (SSIM) and Peak Signal-to-Noise Ratio
(PSNR). All evaluations were conducted at the 4× super-
resolution scale, where the improvements achieved by our
proposed architecture were most significant. As shown in
Table I, our method consistently outperforms other state-of-
the-art models across both metrics.

TABLE I: PSNR and SSIM Comparisons

Model Scale PSNR SSIM
ArbSR 4.00 × 4.00 19.999 0.5867
Mimicked All. 4.00 × 4.00 21.2561 0.3682
SRDNet 4.00 × 4.00 17.495 0.2497
RDUNet 4.00 × 4.00 19.4457 0.3797
ABPN 4.00 × 4.00 18.8270 0.1402
Ours 4.00 × 4.00 22.8018 0.5947
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Fig. 5: Comparison with ArbRCAN highlighting the arbitrary
scale component.

C. Arbitrary and non-symmetric Scale factors

To demonstrate the flexibility of our model, we evaluated its
performance on arbitrary and non-symmetric super-resolution
scale factors, an aspect that has received limited attention
in prior work. Given the scarcity of architectures explicitly
designed for arbitrary scaling, we used ArbRCAN [34] as the
primary baseline for comparison.

Qualitative examples are provided in Figure 5, while quan-
titative metrics for select scale factors are shown in Table II.
The results indicate that our proposed architecture consistently
matches or exceeds the performance of ArbRCAN, high-
lighting its robustness and adaptability across diverse scaling
scenarios.

TABLE II: Quantitative Evaluation with ArbRCAN

Scale Ours ArbRCAN

PSNR SSIM PSNR SSIM

2.50 × 1.50 23.8723 0.6714 23.2296 0.7501

3.00 × 2.50 23.1230 0.6146 21.6624 0.6610

3.40 × 3.40 23.0014 0.6059 20.3507 0.6009

2.50 × 1.50 23.8723 0.6714 23.2296 0.7501

Overall 23.7532 0.6502 22.3573 0.6971

VI. ABLATION STUDY

The primary reason behind training the model in two steps
was the preservation of high frequency data and getting rid of
any artifacts that would emerge as a result of the first step.
Both the steps involved various loss configurations which are
detailed in the following sections.

A. First Step

As mentioned in the sections above, the particular loss
function combination chosen by us was arrived upon after
rigorous experimentation, trial, and errors with several loss
functions. This holds true for both the first and the second

steps of training. Table III highlights the loss functions that
we tested in the first step.

This step was crucial in obtaining a solid frequency-
retention loss function, for each step, the loss configurations
were used to train the model with the hyper parameters α
selected from the range [0.1,0.9] using hyperparameter tuning .
All experiments were hosted on W&B with the metrics and the
training and validation loss recorded for effective monitoring.

TABLE III: Loss Function Configs for the first step of training.

Loss Function α Lr. SSIM PSNR
SSIM + FFL 0.51 0.001 0.6771 21.457
SSIM + Laplace 0.51 0.001 0.6814 21.4635
SSIM + FDL(EffNet) 0.5 0.001 0.633272 22.971
SSIM + FDL(EffNet) 0.5 1e-5 0.57682 20.4245
SSIM + FDL(VGG) 0.49 0.0004 0.6343 23.50

We have already discussed the SSIM [31] loss function
in the methodology section III, here we will briefly dive
into the variants used along with it for the first Step. FFL
or Focal Frequency Loss [38] is also meant to focus on
preserving high frequency components of images and involves
fast fourier transforms similar to FDL [32], however one key
difference here was the FFL did not involve the extraction
of features from the images using a feature extractor(Deep
CNNs). Again the performance was good perceptually for
smaller scale factors but were not so good for 4x SR..

The second variant tested here along with SSIM [31] was
the Laplacian Filter. We used the implementation in the Ko-
rnia Computer Vision Library: Laplacian.The Laplacian filter
operator smooths the given tensor with a laplacian kernel,it
is primarily used for edge detection and image sharpening by
highlighting regions of rapid intensity change, something we
saw useful in our task.

So the Laplacian loss essentially takes the Super-Resolved
output and the ground truth image as inputs and applies the
Laplacian filter to both of them. The mean of the absolute
difference between the extracted features is returned as the
laplacian loss.

The model’s performance with this loss configuration was
interesting to observing, similar to SSIM [31] + FDL [32] it
seemed to preserve the high frequency details for small scales
with white artifacts appearing, but the same was not true for
higher scaling factors. This was something shared across the
other variants as well, even for the first combination - SSIM
[31] + FFL [38], SR was satisfactory for small scaling factors,
barring appearance of white artifacts in the final output, but
for higher scaling factors, the model seemed to hallucinate a
lot, as is evident in Fig.6

https://kornia.readthedocs.io/en/stable/filters.html#kornia.filters.Laplacian
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(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5

Fig. 6: Super-resolved outputs using Laplacian loss: (a)
Ground Truth (GT), (b) result at scale 4.0×4.0, and (c) result
at scale 3.5 × 1.5. Laplacian loss helps retain edge details
across different scales.

SSIM [31] + FDL [32] turned out to be a very promising
configuration because it seemed to preserve the overall fre-
quency content of the images both for the small and the large
scaling factors. Learning rate and the weight assigned to each
loss function in the configuration also played an important
role. We have already detailed FDL loss in the methodology
section III, however the choice of the feature extractor was
also something that we experimented in FDL loss.

Initially the loss function used VGG’s feature extraction
layers to extract the relevant features. But since the training
data varies, the model must also learn the most important
features to extract. This meant that a backward pass also
involve back propagating through the layers of VGG which
made training very time consuming. Hence we switched to
EfficientNet as the feature extractor for FDL which cut training
time to almost 3/4th of the initial, and allowed us make try out
different values of the hyper-parameters. EfficientNet reduced
the training without compromising the quality of the final
output, as is evident in the comparisons drawn in Fig. 8.

(a) GT (b) EffiNet (c) EffiNet+lr(1e-
5)

(d) VGG

Fig. 7: Visual comparison of super-resolution outputs using (a)
Ground Truth (GT), (b) EffiNet, (c) EffiNet with learning rate
1e−5, and (d) VGG, evaluated under SSIM + FDL settings.

B. Second Step
From the first step, the loss configuration SSIM [31] + FDL

[32] proved to be very promising, but as is evident from the
output images, there are a lot of white artifacts, especially over
the areas indicative of tumor, which is derogatory for diagnosis
purposes.

So the purpose of a second step was to train the model
to get rid of the white artifacts while holding on to the high
frequency data that it had learned to preserve. Therefore we
decided to freeze all but the last convolutional layer of the
architecture and train all over again. Instinctively, to test if
freezing alone would do the job, we did not change the loss
function and retrained. But it ended up degrading the output
image.

(a) LR Input (b) GT (c) SR (d) Bicubic

Fig. 8: Visual results of super-resolution using SSIM + FDL
(EffNet). (a) Low-resolution input, (b) Ground truth (GT),
(c) Reconstructed output from our method, and (d) Bicubic
interpolation.

Table IV lists out the various loss configurations that we
experimented with for the second step. Since the lr and α were
chosen from ranges of values between 0.1 and 0.9, we closely
monitored the loss curve and metrics that were logged onto
W&B and we trained the models with the configurations that
showed consistent decrease in validation loss, and promising
metrics.

We have discussed all of the loss functions earlier except
one. The first configuration in the table CHAR + FDL where
CHAR stands for the Charbonnier loss function [39] [40]
[41].Once again, we use the implementation from the Kornia
library1. And that sepcific implementation essentially com-
putes the L1-L2 loss and is computed as follows:

WL(x, y) =
√

(x− y)2 + 1− 1

The inspiration for using this loss function came from the
results with the L1 loss function, and since the Charbonnier
loss incorporates both L1 and L2 loss.

TABLE IV: Loss Configurations that were tried for the second
step.

Loss Function α Lr. SSIM PSNR
CHAR + FDL 0.51 0.0001 0.7032 22.5530
L1 + FDL 0.51 0.001 0.6857 21.3590
L1 0.51 1e-5 0.6168 21.0691
MSE + FFL 0.6 1e-5 0.6290 21.2985
SSIM + FFL 0.51 0.001 0.6771 21.4571
SSIM + FDL(EffNet) 0.57 0.001 0.6778 18.6688
SSIM + L1 0.57 0.001 0.6771 21.4571
SSIM + Laplace 0.51 0.001 0.6393 21.2660
SSIM + Laplace 0.48 0.001 0.6112 19.8712

1https://kornia.readthedocs.io/en/latest/losses.html#kornia.losses.CharbonnierLoss
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But despite decent metrics with Charbonnier loss, the output
for higher scaling factors was not perceptually accurate, and
the model hallucinated a lot of details, as depicted in Fig.9.
All the experiments were run on NVIDIA Quadro P600 GPU,
and here are a few Super Resolved Images for each loss
combination for different scaling factors:

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 9: Super-resolution results using EffNet with Charbonnier
+ FDL loss for different scaling factors: (a) Ground Truth, (b)
4.0× 4.0, (c) 3.5× 1.5, (d) 2.5× 2.0.

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 10: Super-resolution with L1 + FDL: (a) GT, (b) 4.0×4.0,
(c) 3.5× 1.5, (d) 2.5× 2.0.

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 11: Super-resolution results with L1 loss for different
arbitrary scale factors: (a) Ground Truth (GT), (b) 4.0 × 4.0,
(c) 3.5× 1.5, and (d) 2.5× 2.0.

VII. CONCLUSION

In this study, we leveraged EliteNet, a lightweight super-
resolution architecture, to address the challenge of arbitrary
and non-uniform scaling in US imaging, a domain with limited
prior work. Our contributions include acquiring and preparing

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 12: Super-resolution results using MSE + FFL loss.
(a) Ground truth (GT) image; (b–d) Reconstructed images at
different input resolutions: (b) 4.0×4.0, (c) 3.5×1.5, and (d)
2.5× 2.0.

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 13: Super-resolution outputs using Mean Squared Error
(MSE) loss. (a) Ground truth (GT); (b–d) Reconstructed
images at different low-resolution input scales: (b) 4 × 4, (c)
3.5× 1.5, and (d) 2.5× 2.0.

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 14: Qualitative comparison of super-resolved ultrasound
images using SSIM + FFL-based enhancement under different
scaling conditions. (a) Ground Truth (GT) image; (b) Super-
resolved result at a scaling factor of 4.0×4.0; (c) at 3.5×1.5;
and (d) at 2.5× 2.0.

a specialized US dataset tailored for arbitrary scale super-
resolution and designing a novel hybrid loss function that
combines L1, SSIM, VGG perceptual loss, and frequency
domain loss to improve reconstruction quality. This loss
effectively balances pixel accuracy and perceptual fidelity,
enhancing performance in PSNR, SSIM, and visual results
across various scale factors. Quantitative and qualitative com-
parisons with baseline models such as ArbRCAN, SRDNet,
RDUNet, and ABPN demonstrate that our approach achieves



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 9

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 15: Visual comparison of super-resolved ultrasound im-
ages reconstructed using different spatial resolution scales with
the SSIM + L1 loss function. (a) Ground Truth (GT) image;
(b) Super-resolved output at scale 4.0×4.0; (c) Super-resolved
output at scale 3.5 × 1.5; (d) Super-resolved output at scale
2.5× 2.0.

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 16: Qualitative comparison of super-resolved ultrasound
images generated using SSIM + Laplace loss with α = 0.48.
The subfigures show: (a) Ground Truth (GT), (b) super-
resolved output at scaling factor 4.0× 4.0, (c) super-resolved
output at 3.5× 1.5, and (d) super-resolved output at 2.5× 2.0

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 17: Ultrasound image super-resolution results using the
combined Structural Similarity Index Measure (SSIM) and
Laplace regularization with weighting factor α = 0.51. (a)
Ground Truth (GT) image representing the original high-
resolution tissue scan. (b) Super-resolved image reconstructed
with a kernel size of 4× 4. (c) Super-resolved image using a
kernel size of 3.5 × 1.5. (d) Super-resolved image generated
with a kernel size of 2.5× 2.0.

(a) GT (b) 4.0 x 4.0 (c) 3.5 x 1.5 (d) 2.5 x 2.0

Fig. 18: Visual comparison of super-resolved ultrasound im-
ages using the SSIM + FDL (EffNet) method. (a) Ground truth
(GT) image for reference. (b)–(d) Reconstructed outputs at
various super-resolution scaling factors: (b) 4×4, (c) 3.5×1.5,
and (d) 2.5× 2.0.

superior accuracy while maintaining computational efficiency.
The lightweight nature of EliteNet enables practical deploy-
ment in low-resource settings and real-time applications. This
work provides a comprehensive solution for arbitrary-scale
super-resolution of US images by combining a carefully cu-
rated dataset, an efficient model architecture, and a powerful
learning objective. Future work will focus on automatic scale
estimation, modelling temporal consistency for US video, and
clinical validation in real diagnostic workflows.
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But despite decent metrics with Charbonnier loss, the output
for higher scaling factors was not perceptually accurate, and
the model hallucinated a lot of details, as depicted in Fig.9.
All the experiments were run on NVIDIA Quadro P600 GPU,
and here are a few Super Resolved Images for each loss
combination for different scaling factors:

GT 4.0× 4.0 3.5× 1.5 2.5× 2.0

a. Charbonnier + FDL Loss

b. L1 + FDL

c. L1 Loss

d. MSE + FFL Loss

Fig. 19: Qualitative comparison of super-resolved ultrasound
images generated using various loss configurations (a-i). The
subfigures show: (1) Ground Truth (GT), (2) super-resolved
output at scaling factor 4.0× 4.0, (3) super-resolved output at
3.5× 1.5, and (4) super-resolved output at 2.5× 2.0

GT 4.0× 4.0 3.5× 1.5 2.5× 2.0

e. MSE Loss

f. SSIM + FFL Loss

g. SSIM + L1 Loss

h. SSIM + Laplace (α = 0.48)

i. SSIM + Laplace (α = 0.51)

i. SSIM + FDL (EffNet)
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